Pure Core 4 Past Paper Questions: Mark Scheme

Taken from MAP2, MAP3

Pure 2 June 2001

6	(a)	$\cos 2x = \cos^2 x - \sin^2 x$ $= (\cos x - \sin x)(\cos x + \sin x)$	B1 M1		Difference of two squares
		Hence result	A1	3	
	(b)	$R = \sqrt{2}, a = 45^{\circ}$ $\sqrt{2}\sin(x+45) = \frac{1}{2}$	B1B1		
		$\sqrt{2}\sin\left(x+45\right) = \frac{1}{2}$ $x = 114^{\circ}$	M1 A1√		
		$x = 336^{\circ}$	A 1√	5	AWRT these are OK -1 for any extra solutions
		Total		8	

Pure 2 January 2002

4 (a)	$\frac{2\tan x}{1 + \tan^2 x} = \frac{2\sin x}{\cos x \sec^2 x}$	B1		Use of $\sec^2 x$ identity
	$= \frac{2\sin x \cos^2 x}{\cos x}$	M1 A1		reduction to sin/cos only
	$= 2 \sin x \cos x$ $= \sin 2x$	A1	4	AG
(b)	$\sin 30^\circ = \frac{1}{2}$	B1		$\frac{\text{Alternative method}}{\tan(A - B)} = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
	$=\frac{2t}{1+t^2}$	M1		
	$t^2 - 4t + 1 = 0$	M1		$\tan 60 = \sqrt{3}$ $\tan 30 = \frac{1}{\sqrt{3}}$
	$t = \frac{4 \pm \sqrt{16 - 4}}{2}$			$= \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \qquad \qquad \text{A1} \qquad = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}}$
	$=2\pm\sqrt{3}$	A1		Correct attempt to rationalise M1
	a = 2, b = -1	A1	5	$2 - \sqrt{3}$ Al $2 - \sqrt{3}$
	Total		9	

	Q)	Solution	Marks	Total	Comments
	5	(a)	$\cos\alpha = -\frac{5}{13}$	M1A1	2	$\cos \alpha = \frac{5}{13}$ M0A0 unless from $s^2 + c^2 = 1$ in which case M1A0
		(b)	$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$	M1		use of
			$= \left(\frac{12}{13} \times \frac{4}{5}\right) - \left(\frac{5}{13} \times \frac{3}{5}\right)$	A1F		f.t. cosα from (a) Non-exact value gets M1A0A0 or
			$=\frac{33}{65}$			possibly M1A1A0
			65	A1F	3	
İ			Total		5	
I						

	$\theta = 14^{\circ}, 194^{\circ}$	A1A1	6	
	$\tan \theta = \frac{1}{2}$			
	$\cos \theta = 0$ $\theta = 90, 270$	A1A1		
	$\cos\theta(\cos\theta - 4\sin\theta) = 0$	M1		Simplify and factorise Condone division by $\cos \theta$
	$=4\sin\theta\cos\theta$	В1		
(b)	$\cos^2\theta = 2\sin 2\theta$			
8 (a)	Use of an appropriate identity Simplify/cancel to AG	B1 B2	3	

Pure 2 January 2003

4 () ()	7 2 2 0 1 4 0	Di	1	1.0.1
4 (a)(i)	$L = 2\sin\theta + 4\cos\theta$	B1	1	Accept unsimplified
(ii)	$R\sin(\theta + \alpha) = R(\sin\theta\cos\alpha + \cos\theta\sin\alpha)$	M1		Alternative
	$R\cos\alpha = 2$, $R\sin\alpha = 4$	A1F		$2\sin\theta + 4\cos\theta$
	$R = \sqrt{20}$, $\alpha = 1.107$ (AWRT 1.11)	A1FA1F	4	$= \sqrt{20} \left(\frac{2}{\sqrt{20}} \sin \theta + \frac{4}{\sqrt{20}} \cos \theta \right) M1A1F$
	(**************************************			$= \sqrt{20} \left(\cos \alpha \sin \theta + \sin \alpha \cos \theta \right) A1F$
				$=\sqrt{20} \sin(\theta + \alpha), \ \alpha = 1.107$ A1F
				For ft, must be in form $a\sin\theta + b\cos\theta, \alpha$ in radians
(b)(i)	$L_{\text{max}} = \sqrt{20} \ (4.47)$	B1F	1	
(ii)	Maximum when $\theta + \alpha = \frac{\pi}{2}$	M1		Or $\theta + \alpha = 90^{\circ}$
	$\theta \approx 0.46$	A1F	2	CAO
	Total		8	

Pure 2 June 2003

3	(a)	$\tan(45^{\circ} + \theta) = \frac{\tan 45^{\circ} + \tan \theta}{1 - \tan 45^{\circ} \tan \theta}$	M1		Use of correct formula for $\tan(A+B)$
		$=\frac{1+\tan\theta}{1-\tan\theta}$	A1	2	Replace tan 45°=1
	(b)	Put $\theta = 60^{\circ}$: $\tan 105^{\circ} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}}$	M1		use of $\theta = 60^{\circ}$ i.e. $\tan 105 = \frac{1 + \tan 60}{1 - \tan 60}$
			A1		use of $\tan 60 = \sqrt{3}$ in correct formula for
					$\tan(A+B)$ or equiv $\frac{3}{\sqrt{3}}$
		$=\frac{(1+\sqrt{3})^2}{(1+\sqrt{3})(1-\sqrt{3})}$	M1		attempt at rationalisation
		$= \frac{1 + 2\sqrt{3} + 3}{-2}$			
		$=-2-\sqrt{3}$	A1F	4	ft if of required form
		Total		6	

Pure 2 January 2004

3 (a)	$\beta = \tan^{-1}(2.4) = 1.176^{\circ}$	B1	1	
(b)	$10\sin\theta + 24\cos\theta \equiv R\sin(\theta + \alpha)$ $= R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$ $R\sin\alpha = 24$			
	$R\cos\alpha=10$	M1		Any correct attempt at finding R or α
	$\tan \alpha = 2.4$	A1		Correct α (AWRT 1.18) Correct R
	$\Rightarrow 26\sin(\theta + 1.176)$	Ai	2	Concerx
(c)(i)	$3 = 20 \sin(\theta + 1.170)$ Maximum value = 26	Bl√	3	On their answer to part (b)
			. {	(± 26 gets B0) (based on a valid method used in (b))
(ii)	$\sin(\theta + 1.176) = 1$ $\therefore \theta + 1.176 = \frac{\pi}{2}$	M1		
	$\theta = 0.395^{\circ}$	A1√	2	On their value of α (6.68, 13.0,)
	Total		7	

Pure 2 June 2004

2(a)	$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta(i)$			
	$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta(ii)$			
	add the two equations (i) & (ii) together $\sin(\alpha+\beta) + \sin(\alpha-\beta) = 2\sin\alpha\cos\beta$	M1 A1	2	AG
(b)(i)	$2 \sin 8x \cos 2x = \sin (8x + 2x) + \sin (8x - 2x)$	M1		
	$= \sin 10x + \sin 6x$	A1	2	
(ii)	$\int 6 \sin 8x \cos 2x dx$			
	$= 3 \int (\sin 10x + \sin 6x) \mathrm{d}x$	M1ft		Use their (i)
	$= 3\left(\frac{-\cos 10x}{10} - \frac{\cos 6x}{6}\right) + c$	M1ft		Integration attempted
	$= -\frac{3}{10}\cos 10x - \frac{1}{2}\cos 6x + c$	A1ft	3	Any correct form
	Total		7	

Q	Solution	Marks	Total	Comments
1 (a)		В1	1	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{8}{8t}$	M1 A1	2	Use of chain rule
(c)	$t = 0 \Rightarrow x = 1, y = 4$	B1		Use of (1, 4)
	$t = 0 \Rightarrow x = 1, y = 4$ Gradient = $\frac{y - 4}{x - 1} = \frac{1}{0.5}$	M1		
	y = 2x + 2	A1	3	OE: e.g. $(y-4) = 2(x-1)$
	Total		6	

3	(a)	$\frac{dP}{dt}$ is rate of increase of population	В1		
		This is proportional to $P\left(\Rightarrow \frac{dP}{dt} = kP\right)$	B1	2	
(1	b)(i)	$\frac{dP}{P} = k dt$ $(\ln P = kt + c)$ $P = (e^{kt+c}) \qquad \left[= Ae^{kt} \right]$	M1		
		$P = \left(e^{kt+c}\right) \qquad \left[=Ae^{kt}\right]$	A1		
		t = 0, A = 1000	A1		
		t = 0, $A = 1000t = 30, k = \frac{1}{30} \ln 2$	A1	4	
	(ii)	$1000 \circ \frac{1}{30} \ln 2t = 5000 \circ -0.05t$	M1		Equate populations
		1000 = 3000 =	m1		Take logarithms
		$1000 e^{\frac{1}{30} \ln 2t} = 5000 e^{-0.05t}$ $\frac{1}{30} \ln 2t + 0.05t = \ln 5$	A1		OE any correct expression
		t = 22	A1	4	
		Total		10	

	10141		3	
6 (a)	$\begin{bmatrix} -1 \\ -2 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 5 \end{bmatrix} = -5$ attempted	M1		
	$\cos \theta = \frac{-5}{\sqrt{14}\sqrt{50}}$ $\theta = 100.9^{\circ} \implies 79.1^{\circ} \text{ line and normal}$ $\implies 10.9^{\circ} \text{ line and plane}$	m1 B1 A1 B1√	5	$\sqrt{14}$ or $\sqrt{50}$ seen $90^{\circ} - \angle$ between line and normal
(b)	$\mathbf{AB} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$	В1	5	
	Line l_2 is $\mathbf{r} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$ 2 + 3s = 3 + 2t	B1√		OE: ft on $\begin{bmatrix} 2\\3\\3 \end{bmatrix}$ Set up and attempt to solve any two
	4s = -2 + 3t	M1		simultaneous equations
	s = 7, $t = 104 + 3t = -1 + 5s = 34$	A1√ A1		ft on equations Check: 3 rd equation
	Total		10	

				F
7 (a)	$f(x) = \frac{A}{1+2x} + \frac{B}{4-x}$ $= \frac{2}{1+2x} + \frac{1}{4-x}$	B1 M1 A1	3	Any appropriate method
(b)(i)	$\frac{1}{4-x} = \frac{1}{4} \left(1 - \frac{x}{4} \right)^{-1}$	B1 M1		$4\left(1-\frac{x}{4}\right)$
	$= \frac{1}{4} \left[1 + \left(-1\right) \left(-\frac{x}{4}\right) + \frac{(-1)(-2)}{2} \left(-\frac{x}{4}\right)^2 \right]$	A1	3	AG
(ii)	$\frac{1}{1+2x} = (1+2x)^{-1}$			
	$= \left[1 + \left(-1\right)(2x) + \frac{(-1)(-2)}{2}(2x)^2\right]$	M1		
	$=1-2x+4x^2$	A1	2	
(iii)	$f(x) = 2(1 - 2x + 4x^2) + \frac{1}{4} + \frac{x}{16} + \frac{x^2}{64}$	M1		
	$= \frac{9}{4} - \frac{63}{16}x + \frac{513}{64}x^2$	A1	2	Accept $2.25 - 3.94x + 8.02x^2$
(iv)	$-4 < x < 4, -\frac{1}{2} < x < \frac{1}{2}$	В1		
	valid for $-\frac{1}{2} < x < \frac{1}{2}$	B1	2	B2 for $-\frac{1}{2} < x < \frac{1}{2}$ stated
(c)(i)	$\int f(x) dx = \ln 1 + 2x - \ln 4 - x $	M1		$k \ln 1 + 2x $
	1	A1	2	$l \ln 4-x $
(ii)	$\int_0^{0.25} f(x) = [0.4055 - 1.3218] - [1.3863]$			
	= 0.470	B1√		ft on $k \ln 1 + 2x + l \ln 4 - x $
	$\left[\frac{9}{4}x - \frac{63}{16} \cdot \frac{x^2}{2} + \frac{513}{64} \cdot \frac{x^3}{3}\right]_0^{0.25}$	M1		
	= 0.481 Error = 0.011	A1 A1√	4	ft on difference between integrals
	Total		18	

Pure 3 January 2002

			-	
2	dy = dy dt = -2 1	M1		Use chain rule
	$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{-2}{t^2} \times \frac{1}{2}$	A1		
	$t = 2 \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{4}$ gradient of normal = 4	B1F B1F		Substitute $t = 2$ in $\frac{dy}{dx}$ Follow on gradient
	y = 4x + c	M1		Use (7,1) and gradient
	t = 2, x = 7, y = 2 y = 4x - 27	A1	6	
	Alternative			
	Eliminate t			
	$y = \frac{4}{x-3}$, $xy = 4+3y$, $x = \frac{4}{y}+3$	(MI)		Attempt to differentiate correct expression
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4}{(x-3)^2} \times \frac{\mathrm{d}y}{\mathrm{d}x} + y = 3\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{-4}{y^2}$	(AI)		0.000000
	$t = 2 x = 7 y = 1 \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{4}$	(B1ft)		Follow on dy
	gradient of normal = 4	(B1ft)		dx
	y = 4x + c	(MI)		Follow on gradient
	y = 4x - 27	(AI)		
	Total		6	
	Total		U	

		1.5		1
Q	Solution	Marks	Total	Comments
4 (a)(i)	P = 15000	B1	1	
(ii)	$11000 = 15000 e^{-2k}$	M1		
	$-2k = \ln\left(\frac{11}{15}\right)$	m1		
	k = 0.155	A1	3	
(b)	$18000 e^{-0.175t} = 15000 e^{-kt}$	M1		
	$1.2 = e^{0.02t}$	A1		OE
	$\ln 1.2 = 0.02t$	M1		
	t = 9.1 year = 2009	A1	4	AWRT 9.1; accept 9.5
				Special case – use of trial values of t
		(B2)		t=9 B2(Max 2/4)
	Te	otal	8	
7 (a)(i)	dh _ + t /t	M1	' I	$\frac{\mathrm{d}h}{\mathrm{d}t} = \dots \frac{\mathrm{d}h}{\mathrm{d}t} \alpha \sqrt{h} \dots$
	$\frac{1}{dt} = \pm \kappa \sqrt{n}$	A1	2	$\frac{1}{\mathrm{d}t} = \dots \frac{1}{\mathrm{d}t} \alpha \sqrt{n} \dots$
(ii)	$\frac{\mathrm{d}h}{\mathrm{d}t} = \pm k\sqrt{h}$ $\int \frac{\mathrm{d}h}{\sqrt{h}} = \int \pm k \mathrm{d}t$	M1		
	$2h^{\frac{1}{2}} = \pm kt + C$ At $t = 0, h = 1 C = 2$	A1		
	$2\sqrt{h} = 2 - kt$	A1	3	AG
(iii)	At $t = 2$, $h = \frac{1}{2}$			
	$k = \frac{2 - 2\sqrt{\frac{1}{2}}}{2} = 0.293$	M1 A1	2	Use AG and solve for k
(b)	At $h = 0$, $t = \frac{C}{k} = \frac{2}{0.293}$	M1		Use $h=0$ and solve for t
	= 6.8 hours = 6 hrs 50 mins	A1		Accept 410 minutes
	To	tal	9	

Q	Solution	Marks	Total	Comments
1 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = 2 \times \frac{-1}{2t}$	M1 A1	2	
(b)	t=3 gradient normal = 3 t=3 $x=-8$ $y=6y=3x+cy=3x+30$	B1ft B1 M1		Ft on gradient tangent $\left(\frac{-1}{\text{gradient tangent}}\right)$
	y = 3x + 30	A1	4	
	Total		6	

				P
2 (a)	$\frac{4-x}{(1-x)(2+x)} = \frac{A}{1-x} + \frac{B}{2+x}$			
	4 - x = A(2 + x) + B(1 - x)	M1		
(b)(i)	x = 1 $A = 1$ $x = -2$ $B = 2$	M1A1	3	Attempt to find A and B
(1)(1)	$\frac{1}{2+x} = \frac{1}{2} \left(1 + \frac{x}{2} \right)^{-1}$	В1		
	$= \frac{1}{2} \left(1 + -1 \times \frac{x}{2} + \frac{-1 \times -2}{2} \left(\frac{x}{2} \right)^2 \right)$	M1		Use of binomial series $n = -1 \text{ use } \frac{x}{2}$
(ii)	$\frac{1}{1-x} = (1-x)^{-1}$	A1	3	AG convincingly obtained
	$=1+-1\times(-x)+\frac{-1\times-2}{2}(-x)^2$	M1		
	$=1+x+x^2$	A1	2	
	Alternative to part (b) by Maclaurin $f(x) = (2+x)^{-1} f(0) = \frac{1}{2}$ $f'(x) = -(2+x)^{-2} f'(0) = -\frac{1}{4}$ $f''(x) = 2(2+x)^{-3} f''(0) = \frac{2}{8}$	(MI) (A1)		Differentiate twice
	$f(x) = \frac{1}{2} - \frac{1}{4}x + \frac{1}{2} \times \frac{2}{8}x^{2}$ OR $(2+x)^{-1} = 2^{-1} + (-1) \times 2^{-2}x$	(A1)		AG obtained using $x = 0$, in Maclaurin's series
	$(2+x)^{3} = 2^{3} + (-1) \times 2^{3} x$ $+ \frac{-1 \times -2 \times 2^{-3}}{2!} x^{2}$	(M1A 1) (A1)		use negative powers of 2 all correct

Q	Solution	Marks	Total	Comments
(c)	$\frac{4-x}{(1-x)(2+x)} = 2 + \frac{x}{2} + \frac{5}{4}x^2$	M1A1	2	Ignore extra terms
	Alternative to part (c)			
	$(4-x)\left(\frac{1}{2} - \frac{x}{4} + \frac{x^2}{8}\right)(1+x+x^2) = a+bx$	(MI)		
	Correct expansion	(A1)		
	Total		10	

3 (a)	$x = 2 y = \pm \frac{5\sqrt{5}}{3} = \pm 3.73$	M1A1	2	allow ± 3.7, or any correct numerical form
(b)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^2}{9} + \frac{y^2}{25} \right) = \frac{\mathrm{d}}{\mathrm{d}x} (1)$	M1		attempt implicit differentiation LHS only, with use of chain rule.
	$\frac{2x}{9} + \frac{2y}{25} \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1		OE correct differentiation
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \frac{2}{9} \ 2 \ \frac{25}{2} \ \frac{3}{5} \frac{1}{\sqrt{5}} = \pm 1.5$	M1A1	4	substitute $x = 2$, and values for y . Accept ± 1.49
	Alternative to part (b) $y = 5\sqrt{1 - \frac{x^2}{9}}$	(MI)		differentiate a function of form $y = a \sqrt{c + bx^2}$
	$\frac{dy}{dx} = 5 \times \frac{1}{2} \times -\frac{2}{9}x \left(1 - \frac{x^2}{9}\right)^{-\frac{1}{2}}$	(m1)		use chain rule
	$x = 2; y = \pm 3.73$	(A1) (A1)		$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm 1.5$
	Total		6	
4 (a)	$\frac{1}{2}m_0 = m_0 e^{-28k}$	M1		Allow any value for m_0
	$\frac{1}{2} = e^{-28k}$	A 1		
	$ \ln\frac{1}{2} = -28k $	M1		Take lns of an exponential expression
	k = 0.024755(256)	A 1	4	AG convincingly obtained $-\ln^{\frac{1}{2}}$
				NB sign $\frac{-\ln\frac{1}{2}}{28}$
				SC – substitute $k = 0.024755$ into e^{-28k} explain why this shows
(b)	1 = -100 k	M1		mass is halved max 2/4
(b)	1 /// 0	M1 A1	2	
(b)	m = 11.9 g		2	mass is halved max 2/4 accept 11.89
(b)	m = 11.9 g Alternative to part (b)	A1	2	mass is halved max 2/4 accept 11.89
(b)	m = 11.9 g		2	mass is halved max 2/4

Q		Solution	Marks	Total	Comments
5	(a)	(2 ·	M1		Separate; attempt to integrate both
		$\int y^2 dy = \int 1 dx$			sides
		1 .	A1A1		1 3.
		$\int y^2 dy = \int 1 dx$ $\frac{1}{3} y^3 = x + c$			or $\frac{1}{3}y^3 + c = x$
		3			
					A1A0 2 out of $\frac{1}{3}y^3$, x, c
		2/			
		$y = \sqrt[3]{3x + K}$	A1	4	Accept $3c$ for K .
	(b)	$y = \sqrt[3]{3x + K}$ $-1^3 = 3 \times 1 + K$	M1		Use of (1,-1) in an expression
					with a constant.
		3 - 3/			
		$y^3 = 3x - 4 y = \sqrt[3]{3x - 4}$	A1	2	Correct expression connecting y
					and x. Allow $K = -4$
		Total		6	

			~	
8 (a)	3 + 4t = 8 - s	M1		Set up and attempt to solve
	-2 + 4t = -1 + 3s			
	t=1 $s=1$	m1A1		
	$1+3\times1=2+1\times2=4 (x,y,z)=(7,2,4)$	A1 B1ft	5	Check third equation ft on consistent use of <i>s</i> or <i>t</i>
(b)(i)	$4 \times 1 + 4 \times 11 + 3 \times -16 = 0$	M1	3	Use scalar product with a direction
	$-1 \times 1 + 3 \times 11 + 2 \times -16 = 0$	A1	2	Both equal zero

Pure 3 January 2003

1 (a)	$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(-\frac{1}{2})x^2}{2}$	M1		
	$= 1 + \frac{1}{2}x - \frac{1}{8}x^2$	A1	2	
(b)(i)	$\sqrt{4+2x} = 2\sqrt{1+\frac{x}{2}}$	В1		(b)(i)Specialcases
	$=2\left(1+\frac{1}{2}\left(\frac{x}{2}\right)-\frac{1}{8}\left(\frac{x}{2}\right)^2\right)$	M1		Allow A1F for $2 + \frac{x}{2} + \frac{x^2}{16}$ follow $1 + \frac{1}{2}x + \frac{1}{8}x^2$
	$=2+\frac{x}{2}-\frac{x^2}{16}$	A1	3	or $4\left(1 + \frac{x}{4} - \frac{x^2}{32}\right) = 4 + x - \frac{x^2}{8}$
	Alternative using $(a+x)^n = a^n + na^{n-1}x + \frac{n(n-1)a^{n-2}}{2}x^2$			
	$(4+2x)^{\frac{1}{2}} = 4^{\frac{1}{2}} + \frac{1}{2}4^{-\frac{1}{2}}2x + \frac{1}{2}\left(-\frac{1}{2}\right)4^{-\frac{3}{2}}$ $(2x)^2$	(MI AI)		M1 – use of $n = \frac{1}{2}$; $a = 4$ $x \to 2x$ A1 – correct
	$= 2 + \frac{1}{2} \cdot \frac{1}{2} \cdot 2x - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{8} 4x^{2}$ $= 2 + \frac{1}{2}x - \frac{1}{16}x^{2}$	(A1)		A1 – correct simplification
(ii)	-2 < x < 2 Total	B1	6	
	10tai		U	

2	(a)	dy dy dt			
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x}$	M1		Chain rule and derivatives attempted.
		$=-\sin t \times \frac{1}{3\cos t}$	A1		
		3 cos t			
		$t = \frac{\pi}{4}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	B1	3	For B1, substitution of $t = \frac{\pi}{4}$ into
		4 dx 3			4
					expression for $\frac{dy}{dx}$ seen.
					Allow
					$-\frac{\sin\frac{\pi}{4}}{3\cos\frac{\pi}{4}} = -\frac{1}{3} \text{ or } -\frac{0.707}{2.121} = -\frac{1}{3}$
					$3\cos\frac{\pi}{4}$ 3 2.121 3
		Alternative			AG
		$\frac{x^2}{9} + y^2 = 1$ $y = \sqrt{1 - \frac{x^2}{9}}$			
		. '			
		$\frac{dy}{dx} = \frac{1}{2} \left(1 - \frac{x^2}{9} \right)^{-\frac{1}{2}} \left(-\frac{2x}{9} \right)$	(MI)		
		$\frac{dx}{dx} - \frac{1}{2} \left(1 - \frac{9}{9}\right) \left(-\frac{9}{9}\right)$	(A1)		
		π 3			
		$t = \frac{\pi}{4} \qquad x = \frac{3}{\sqrt{2}}$			
		$\frac{dy}{dy} = \frac{1}{1} \cdot \frac{1}{1} \cdot \left(\frac{-6}{-6}\right) = \frac{3}{1} = \frac{-1}{1}$	(A1)		
		$\frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{1}{2}}} \cdot \left(\frac{-6}{9\sqrt{2}}\right) = -\frac{3}{9} = -\frac{1}{3}$			
	(b)	$t = \frac{\pi}{4}$ $x = \frac{3}{\sqrt{2}}$ $y = \frac{1}{\sqrt{2}}$	M1		allow 2.12, 0.71
		$Y = \frac{1}{4} \qquad X = \frac{1}{\sqrt{2}} \qquad Y = \frac{1}{\sqrt{2}}$	A1		anow 2.12, 0.71
		1 1(3)	111		
		$y - \frac{1}{\sqrt{2}} = -\frac{1}{3} \left(x - \frac{3}{\sqrt{2}} \right)$	M1		
		1			$\sqrt{2}$ OE numerical form
		$y = -\frac{1}{3}x + \sqrt{2}$	A1	4	Accept 1.4
		Alternative			Accept 1.4
		$x = 3\sin\frac{\pi}{4} y = \cos\frac{\pi}{4}$	(MI)		
		$y - \cos\frac{\pi}{4} = -\frac{1}{3}\left(x - 3\sin\frac{\pi}{4}\right)$	(MI)		
		4 3 (4)			
		$y = -\frac{1}{3}x + \sin\frac{\pi}{4} + \cos\frac{\pi}{4}$	(A1)		
		$y = -\frac{1}{3}x + \sqrt{2}$	(A1)		
		Total		7	

Q	Solution	Marks	Total	Comments
	$\frac{x^2}{x^2 - 16} = \frac{x^2 - 16 + 16}{x^2 - 16}$ Accepted equivalents $\frac{x^2}{x^2 - 16} = 1 + \frac{16}{x^2 - 16}$ $\Rightarrow x^2 = x^2 - 16 + 16$ $= x^2$ $\frac{x^2}{x^2 - 16} = A + \frac{B}{x^2 - 16}$ $\Rightarrow x^2 = A(x^2 - 16) + B$ $x = 4 \Rightarrow B = 16$ $\Rightarrow A = 1$	B1	Total	OE eg by division; AG Use of a particular value of $x, x = 0,1,2$ showing LHS=RHS is B0 (see equivalents)
(ii)	$\frac{x^2}{x^2 - 16} = 1 + \frac{A}{x^2 - 16}$ $\Rightarrow x^2 = x^2 - 16 + A$ $\Rightarrow A = 16$ $\frac{16}{x^2 - 16} = \frac{A}{x - 4} + \frac{B}{x + 4}$ $16 = A(x + 4) + B(x - 4)$ $x = 4 \Rightarrow A = 2$ $x = -4 \Rightarrow B = -2$	M1 A1	2	Any equivalent method
(b)	$\int_{5}^{8} \left(1 + \frac{2}{x - 4} - \frac{2}{x + 4}\right) dx$			
	$ = \left[x + 2\ln x - 4 - 2\ln x + 4 \right]_{5}^{8} $	M1 A1		$x + k \ln(x-4) + l \ln(x+4)$
	$= \left[x + 2\ln x - 4 - 2\ln x + 4 \right]_{5}^{8}$ $= \left(8 + 2\ln 4 - 2\ln 12 \right) - \left(5 + 2\ln 1 - 2\ln 9 \right)$	m1		Allow both M1, m1 if $\int Idx = x$ is omitted.
	$= 3 + 2 \ln 3$	A1	4	ft on both A marks on values of A, B.
				Accept 3+ln9
	Total		7	

7 (a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{7}{14000x}$	B1	1	AG $\frac{7}{14\ 000x}$ seen; (7 = 7 not required)
(b)	$\int_{0}^{2} 2000x = \int_{0}^{2} 1 dt$	M1		Attempt separation and integration
	$\int_{0}^{2} 2000x = \int_{0}^{4} 1 dt$ $\left[2000 \frac{x^{2}}{2} \right]_{2}^{3} = [t]_{0}^{4}$	A1		or $1000x^2 = t + c$
	$2000 \left[\frac{9}{2} - \frac{4}{2} \right] = t$ $t = 5000 \text{ (sec)}$	m1 A1		$x = 2, t = 0 \Rightarrow c = 4000$ $x = 3 \Rightarrow t = 5000$
	$t = 1.39 \text{ hrs} \Rightarrow 1.23 \text{ pm}$	A1F	5	Accept 1 hour 23min (ignore seconds) ft on $0 \le t \le 20000$
	Total		6	20 000

2 (a)	$\frac{1}{dt} = 3, \frac{5}{dt} = \frac{1}{t^2}$	M1		Use chain rule
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{-1}{3t^2}$	A1	2	
(b)	$t = 1, \ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{3}$	B1F		
	Gradient of normal = 3	B1F		Follow on gradient
	y = 3x + c $t = 1, x = 2, y = 1$	M1		Use (2, 1) and gradient
	y = 3x - 5	A1F	4	ft on gradient
				Accept y - 1 = 3(x - 2)
	Total		6	

				1
4 (a)	A = 1000	B1	1	
(b)	$c^{60} = \frac{12000}{A}$	M1		
	$60 \log c = \log 12 \text{ or } c = \frac{60}{12}$	m1		Or ln used. $c = 60 \sqrt{\frac{12000}{A}}$, their A
	c = 1.04228	A1	3	AG convincingly obtained
				SC: $1000 \times 1.0423^{60} = 12011$
				(12.011 or AWRT seen or 12.011×1000 SC1)
(c)(i)	$\log N = \log Ac'$ $\log N = \log A + t \log c$	M1		Attempt to take logs (log or ln seen)
	$\log N = \log A + t \log c$	m1		Correct use of log laws
	$t = \frac{\log N - \log A}{\log c}$	A1F	3	OE: $t = \frac{\log N - 3}{0.01798}$ etc. ft their <i>A</i>
(ii)	$t = 167 \mathrm{minutes}$	В1	1	condone more figures if penalised in 3(b)
	Total		8	

Pure 3 January 2004

0	Solution	Marks	Total	Comments
Q 1(a)(i)		M1	Total	Comments
1(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = 6.\frac{1}{6t}$	Al	2	
(ii) (b)(i)	$t = \frac{1}{2} \text{gradient} = 2$ $t = \frac{y}{6} \qquad x = 3\left(\frac{y}{6}\right)^2 = \left[\frac{y^2}{12}\right]$			ft only on $\frac{dy}{dx} = f(t)$ Accept $\frac{3y^2}{36}$
				Use of tangent $y = 2x + \frac{3}{2}$ or $x = \frac{y}{2} - \frac{3}{4}$ instead of curve: no marks
(ii)	$\frac{dx}{dy} = \frac{2y}{12}$ $t = \frac{1}{2} \qquad y = 3$	M1		Alternative: $dx = 2y$
	$t = \frac{1}{v} v = 3$	B1		$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{2y}{12} $ M1
	2			$\frac{y}{6} = t$ B1
				$t = \frac{1}{2}; \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2} $ M1
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{6}{12} \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12}{6} = 2$	M1A1	4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2$ A1
	Total		9	

3 (a)(i) $t = 0$ $P = 50$		Total		6	
(ii) $e^{\frac{-t}{4}} \rightarrow 0 P \rightarrow 100$		$\ln \frac{1}{2} = \frac{-t}{4} \qquad t = 2.8$	M1A1	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(b)	$75 = 100 - 50e^{\frac{-t}{4}} \frac{1}{2} = e^{\frac{-t}{4}}$	M1A1		Allow $\frac{25}{50}$ for $\frac{1}{2}$
	(ii)	$e^{\frac{-t}{4}} \rightarrow 0 P \rightarrow 100$	B1	1	
			В1	1	

Q Solution Marks Total 4 (a) $8 + 3x = A(2-x) + B(1+3x)$ M1 Any equivalent $x = 2$ $14 = 7B$ $B = 2$ M1 $x = \frac{-1}{3}$ $7 = \frac{7}{3}A$ $A = 3$ A1 3 (b) $\frac{1}{1+3x} = (1+3x)^{-1}$ Alternative by $f' = \frac{\pm 3}{(1+3x)^2}$;	
$x = 2 14 = 7B B = 2$ $x = \frac{-1}{3} 7 = \frac{7}{3}A A = 3$ (b) $\frac{1}{1+3x} = (1+3x)^{-1}$ Alternative by	Maclaurin
(b) $x = \frac{-1}{3}$ $7 = \frac{7}{3}A$ $A = 3$	
(b) $\frac{1}{1+3x} = (1+3x)^{-1}$ Alternative by	
1753	
$f' = \frac{\pm 3}{(1+3x)^2};$	$f'' = \frac{\pm 18 \text{ or } 6}{\left(1 + 3x\right)^3} \qquad M1$
$=1+-1(3x)+\frac{-12}{2}(3x)^{2}$ M1 and f(0) f'(0) Allow $3x^{2}$	0) f"(0) seen
$\begin{vmatrix} =1-3x+9x^2 \end{vmatrix}$ A1 2	
(c) $\frac{1}{2-x} = \frac{1}{2(1-\frac{x}{2})}$ B1 Alternative:	
$+\frac{(-12)}{2!}2^{-3}$	$(-x)^{2} + (-1)2^{-2}(-x)$ $(-x)^{2}$ thive powers of 2
$= \left 1 + -1 \right \frac{-x}{2} \left + \frac{-1 \cdot -2}{2} \right \frac{-x}{2} $ M1 A1 – coefficie	
$= \frac{1}{2} + \frac{x}{4} + \frac{x}{8}$ Alternative:	, convincingly obtained
$(1-\frac{x}{2})^{-1}$ by M	Iaclaurin
$\mathbf{f'} = \frac{\pm 1}{(2-x)^2}$	$f'' = \frac{\pm 2}{(2-x)^3}$ M1
f(0) f'(0)	
AG convincing	gly obtained A1
(d) $\frac{8+3x}{(1+3x)(2-x)}$	
$= 3(1 - 3x + 9x^{2}) + 2\left(\frac{1}{2} + \frac{x}{4} + \frac{x^{2}}{8}\right)$ MIM1 M1 – use serie M1 – use PFs	es and multiply out
$4 - \frac{17}{2}x + \frac{109}{4}x^2$ Alternative:	(1)
A1 $(8+3x)(1-3x)$	$+9x^2\left(\frac{1}{2} + \frac{x}{4} + \frac{x^2}{8}\right)$ M1
(e) Valid for $ x < -$ B2	Multiply out M1
B1 for $ x < \frac{1}{3}$	and $ x < 2$ or $ x < 1$
Total 13	

6 (a)
$$\int \frac{dv}{10-5v} = \int dt$$

$$-\frac{1}{5} \ln (10-5v) = t+c$$

$$t = 0 \quad v = 0 \quad c = -\frac{1}{5} \ln 10$$

$$t = \frac{1}{5} \ln \left(\frac{10}{10-5v}\right) = \frac{1}{5} \ln \left(\frac{2}{2-v}\right)$$
M1
Attempt to separate and integrate
$$t = \frac{1}{5} \ln (10-5v)$$
c required
Find c or use limits
$$t = \frac{1}{5} \ln \left(\frac{10}{10-5v}\right) = \frac{1}{5} \ln \left(\frac{2}{2-v}\right)$$
A1
6 AG convincingly obtained
Alternative:
$$0.5 = \frac{1}{5} (\ln 2 - \ln (2-v))$$
M1
$$t = 0.5 \quad 2 - v = 2e^{-2.5}$$

$$v = 1.8358 \quad v = 1.8 \text{ m s}^{-1}$$
A1
3 $v = 1.8 \quad \text{A1}$

Q	Solution	Marks	Total	Comments
7 (a)(i)	$\overrightarrow{AB} = \begin{bmatrix} 2 \\ 4 \\ -4 \end{bmatrix}$			No marks for \overrightarrow{AB} alone
	$ \overrightarrow{AB} = \sqrt{2^2 + 4^2 + 4^2} = 6$	M1A1	2	
(ii)	M is (4, 1, 0)	В1	1	Accept $\begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$
(b)	$\overrightarrow{CM} \bullet \overrightarrow{AB} = \begin{bmatrix} -4\\3\\1 \end{bmatrix} \bullet \begin{bmatrix} 2\\4\\-4 \end{bmatrix}$	M1A1	2	M1 – sensible attempt at $\overrightarrow{CM} \bullet \overrightarrow{AB}$ Allow \overrightarrow{MC} for \overrightarrow{CM}
	= $-8 + 12 - 4 = 0$			$\mp 8 \mp 12 \mp 4 = 0$ must be seen

M1

1(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{-1}{2t^2} \frac{1}{2}$	M1		attempt $\frac{dy}{dt} & \frac{dx}{dt}$; use $\frac{dy}{dt} \cdot \frac{dt}{dx}$ $\left(\frac{dy}{dt} \cdot \frac{dx}{dt} \right)$
		A 1	2	(di di)
	dv = 1	A1	2	Use chain rule (ISW at this stage)
(b)	$t = 1 \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{4}$	B1F		ft $t = 1$ subst in their $\frac{dy}{dx}$
	gradient of normal = 4	B1F		Follow on gradient $\frac{-1}{\text{their} - \frac{1}{4}}$
	$y = 4x + c$ $t = 1$ $x = 1$ $y = \frac{1}{2}$	M1		Use $(1, \frac{1}{2})$ and gradient
				$\frac{1}{2} = \text{their } 4 + c; \frac{y - \frac{1}{2}}{x - 1} = \text{their } 4$
	$y = 4x - \frac{7}{2}$	A1F	4	OE: F on gradient; $y = (\text{their } m_N) x + c$
	Special Cases			
	Eliminate t in part (a)			
	$y = \frac{1}{x+1}$; $\frac{dy}{dx} = \frac{\pm 1}{(x+1)^2}$ M1			
	$=\frac{-1}{(2t)^2} \text{A1}$			Tangent instead of normal
	$m_T = -\frac{1}{4}$ B1F			$m_T = \frac{1}{4}$
	$\frac{1}{2} = -\frac{1}{4} \times 1 + c; \ c = \frac{3}{4}$ M1			$\frac{1}{2} = \frac{1}{4} \times 1 + c; \ c = \frac{1}{4}$
	$y = -\frac{1}{4}x + \frac{3}{4}$ A1F(5/6)			$y = \frac{1}{4}x + \frac{1}{4} \tag{4/6}$
	Common error			ND late substitution for t
	$y = \frac{1}{2t} = 2t^{-1}$; $\frac{dy}{dt} = 2t^{-2}$; $\frac{dx}{dt} = 2$			NB late substitution for <i>t</i> (could be retrospective) B1F B1F
	$\frac{dy}{dx} = \frac{2t^{-2}}{2} = -t^{-2} (\text{or } t^{-2}) \text{M1A0}$			but if t's in final answer & no subst'n: either 0/4
	$m_N = -1, +1$ B1F			or 1/4 if (1,1/2) and gradient
	$m_T = +1, -1$ B0F (no ft for just			used in linear equation
	changing sign)			used in intear equation
	$x = 1, y = \frac{1}{2}, \frac{1}{2} = -1 + c \text{ or } \frac{1}{2} = 1 + c$			
	M1			

PMT

2(a	$(1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + \frac{1}{3}\left(\frac{1}{3} - 1\right)\frac{x^2}{2}$	M1		
	$=1+\frac{1}{3}x-\frac{1}{9}x^2$	A1	2	
(b	$(8+4x)^{\frac{1}{3}} = \left(8\left(1+\frac{1}{2}x\right)\right)^{\frac{1}{3}}$	B1		
	$= 2\left(1 + \frac{1}{3}\frac{1}{2}x - \frac{1}{9}\left(\frac{1}{2}x\right)^2 + \dots\right)$	MI		M1 for expression inside bracket SC: $(8 + 4x)^{\frac{1}{3}}$ $= 8^{\frac{1}{3}} + \frac{1}{3}8^{-\frac{2}{3}} \cdot 4x + \frac{1}{3}\left(-\frac{2}{3}\right)8^{-\frac{5}{3}} \cdot \frac{(4x)^2}{2}$
				M1 for $8^{\frac{1}{3}}$ $8^{-\frac{2}{3}}$, $8^{-\frac{5}{3}}$ M1 for $4x$, $\frac{(4x)^2}{2}$ $= 2 + \frac{1}{3}x - \frac{1}{18}x^2$
	$=2+\frac{1}{3}x-\frac{1}{18}x^2+$	A1	3	Accept recurring decimals or equiv fractions
	Tot	al	5	
3(a)	30 = A(7-2x) + B(x+4)	M1		PFs: any valid method
,	x = -4 30 = 15A $A = 2$	M1		for substituting values of x to find A , B
	$x = \frac{7}{2} 30 = \frac{15}{2}B B = 4$	A1	3	
(b)	$\int_{0}^{3} \frac{2}{x+4} + \frac{4}{7-2x} \mathrm{d}x$			
	$= [2\ln(x+4) - 2\ln(7-2x)]_0^3$	M1A1F		M1 for $[c \ln(x+4) + d \ln(7-2x)]$ Ignore limits here
	$= 2 \ln 7 - 2 \ln 1 - 2 \ln 4 + 2 \ln 7$	m1A1F		m1 for $(c\ln 7 + d\ln 1) - (c\ln 4 + d\ln 7)$ m1 Use limits right way round. A1 All correct and with $\ln 1 = 0$. A1F for $c\ln 7 - d\ln 7 - c\ln 4$
				All for chi / - chi / - chi 4
		A1	5	or $-2 \ln \frac{4}{49}$ or $-4 \ln \frac{2}{7}$
		Al	5	

	l'			
Q	Solution	Marks	Total	Comments
4(a)	$9(y+2)^2 = 5 + 4(x-1)^2$			
	$x=2 9(y+2)^2=5+4$	M1		Substitute $x = 2$
				$9(y+2)^2 = 5+4\times3^2$ i.e. $(x+1)^2$
	$y+2=\pm 1$ $y=-1,-3$	m1A1	3	Find two y values. Coords not required $(y+2)^2 = \frac{41}{9}, y+2 = \pm \frac{\sqrt{41}}{3} M1A0$
(b)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(9(y+2)^2 \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(5 + 4(x-1)^2 \right)$	M1		Attempt implicit differentiation with
				use of chain rule: $\frac{dy}{dx}$ attached to y
				term, not x term
	$18(y+2)\frac{dy}{dx} = 0 + 8(x-1)$	A1A1		
	(2,-1) $(2,-3)$	m1		Use $x = 2$ and candidate's y values
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{9} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{4}{9}$	A1	5	OE; CAO
				Alternative: explicit differentiation
				$y = \sqrt{\frac{5 + 4(x - 1)^2}{9}} - 2$
				$\frac{dy}{dx} = \frac{1}{2} \left(\frac{5 + 4(x - 1)^2}{9} \right)^{-\frac{1}{2}} \frac{8}{9} (x - 1)$
				(M1A2 fully correct; M1A1 if 9 of $\frac{8}{9}$
				missing
				$x = 2$: $\frac{dy}{dx} = \pm \frac{1}{2} (1) \frac{8}{9} = \pm \frac{4}{9}$
	Total		8	

$\ln x = t - \frac{1}{2}kt^2 + c$ $x = e^{t - \frac{1}{2}k^2 + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}k^2}, \text{ where } A = e^c$ (if A suddenly appears without justification: A0) $1 = e^{t - \frac{1}{2}kt^2}, \text{ where } A = e^c$ (if A suddenly appears without justification: A0) $1 = e^{t - \frac{1}{2}kt^2} = A1$ (2) $c = \ln 2000$ $1 = e^{t - \frac{1}{2}kt^2} = \ln 2000$		Total		9		
$x = \frac{t - \frac{1}{2}kt^2 + c}{x = 0200, t = 0} \implies A = 2000$ $x = Ae \frac{t - \frac{1}{2}kt^2}{2}, \text{ where } A = e^c$ (if A suddenly appears without justification: A0) Alternatives (1) $c = \ln 2000$ M1 $\ln \frac{x}{2000} = t - \frac{1}{2}kt^2$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^2} \implies M1$ $x = 2000 e^{t - \frac{1}{2}kt^2} + \ln 2000$ $= 2000 e^{t - \frac{1}{2}kt^2} = \ln 1$ (2) $c = \ln 2000$ M1 $x = e^{t - \frac{1}{2}kt^2} + \ln 2000$ $= 2000 e^{t - \frac{1}{2}kt^2} = \ln 2000$ $= 2000 e^{t -$		6	A1		OE	
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) Alternatives (1) $c = \ln 2000$ M1 $\ln \frac{x}{2000} = t - \frac{1}{2}kt^{2}$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^{2}} = \frac{1}{2}kt^{2}$ A1 (3) $\int_{0}^{t} (1 - kt) dt$ M1 $\ln x - \ln 2000 = t - \frac{1}{2}kt^{2}$ A1 For both sets of limit $\ln x - \ln 2000 = t - \frac{1}{2}kt^{2}$ A1 $\ln \left(\frac{x}{2000}\right) = t - \frac{1}{2}kt^{2}$ A1 $\ln \left(\frac{x}{2000}\right) = t - \frac{1}{2}kt^{2}$ A1 $\ln \left(\frac{x}{2000}\right) = t - \frac{1}{2}kt^{2}$ A1 No simplification required			M1		For taking In	
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) $x = \frac{t - \frac{1}{2}kt^{2}}{t^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) $x = e^{t - \frac{1}{2}kt^{2}} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ (2) $c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} = \ln 2000$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ (3) $\int_{0}^{t} (1 - kt) dt \qquad M1$ (3) $\int_{0}^{t} (1 - kt) dt \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} \qquad A1$ (3) $\int_{0}^{t} (1 - kt) dt \qquad M1$ $x = \ln x - \ln 2000 = t - \frac{1}{2}kt^{2} \qquad M1$ $\ln x - \ln 2000 = t - \frac{1}{2}kt^{2} \qquad M1$ $\ln \left(\frac{x}{2000}\right) = t - \frac{1}{2}kt^{2} \qquad M1$ $\ln \left(\frac{x}{2000}\right) = t - \frac{1}{2}kt^{2} \qquad A1$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$	(b)	4	В1		No simplification required	
$x = \frac{t - \frac{1}{2}kt^{2} + c}{x = 2000, t = 0} \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) $x = \frac{t - \frac{1}{2}kt^{2}}{x}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) $x = \frac{t - \frac{1}{2}kt^{2}}{x} \Rightarrow t $						
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) $x = 2000e^{t - \frac{1}{2}kt^{2}}$ $x = 2000e^{t - \frac{1}{2}kt^{2}}$ A1 $x = 2000e^{t - \frac{1}{2}kt^{2}}$ A1 $x = e^{t - \frac{1}{2}kt^{2}}$ A1 $x = 2000e^{t - \frac{1}{2}kt^{2}} + \ln 2000$ $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000$ $x = 2000e^{t - \frac{1}{2}kt^{2}}$ A1 $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000$ $x = e^{t - \frac$					(2000) =	
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) $x = 2000 e^{t - \frac{1}{2}kt^{2}}$ $x = 2000 e^{t - \frac{1}{2}kt^{2}}$ $x = 2000 e^{t - \frac{1}{2}kt^{2}}$ A1 $x = 2000 e^{t - \frac{1}{2}kt^{2}}$ A1 $x = e^{t - \frac{1}{2}kt^{2}} = e^{t - \frac{1}{2}kt^{2}}$ $x = 2000 e^{t - \frac{1}{2}kt^{2}}$ A1 $x = e^{t - \frac{1}{2}kt^{2}} = e^{t - \frac{1}{2}kt^{2}}$ A1 $x = e$					2	
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) $x = \frac{t^{-1} - kt^{2}}{2} + \frac{t^{-1} - kt^{2}}{2} = \frac{t^{-1} - \frac{1}{2}kt^{2}}{2}$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^{2}} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ (2) $c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} = \ln 2000$ $= 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ (3) $\int_{0}^{t} (1 - kt) dt \qquad M1$ $\left[\ln x\right]_{2000}^{t} = \left[t - \frac{1}{2}kt^{2}\right]_{0}^{t} \qquad A1 \text{ for } \ln x$ Al for $t - \frac{1}{2}kt^{2}$ Al For both					'	mints
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) Alternatives $(1) c = \ln 2000 \qquad M1$ $\ln \frac{x}{2000} = t - \frac{1}{2}kt^{2}$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^{2}} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ $(2) c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000 \qquad M1$ $= e^{t - \frac{1}{2}kt^{2}} e^{\ln 2000}$ $= 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ $(3) \int_{0}^{\infty} (1 - kt) dt \qquad M1$ Al for $\ln x$					A1 For	both
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) Alternatives $(1) c = \ln 2000 \qquad M1$ $\ln \frac{x}{2000} = t - \frac{1}{2}kt^{2}$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^{2}} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ (2) $c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000 \qquad M1$ $= e^{t - \frac{1}{2}kt^{2}} e^{\ln 2000}$ $= 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ (3) $\int_{0}^{\infty} (1 - kt) dt \qquad M1$ Alternatives $(1) c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} \qquad A1$						
$x = \frac{t - \frac{1}{2}kt^{2} + c}{x}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{\frac{t - \frac{1}{2}kt^{2}}{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) Alternatives $(1) c = \ln 2000 \qquad M1$ $\ln \frac{x}{2000} = t - \frac{1}{2}kt^{2}$ $\frac{x}{2000} = e^{\frac{t - \frac{1}{2}kt^{2}}{2}} \qquad M1$ $(2) c = \ln 2000 \qquad M1$ $x = e^{\frac{t - \frac{1}{2}kt^{2}}{2}} \qquad A1$ $(2) c = \ln 2000 \qquad M1$ $x = e^{\frac{t - \frac{1}{2}kt^{2}}{2}} + \ln 2000 \qquad M1$ $= e^{\frac{t - \frac{1}{2}kt^{2}}{2}} = \ln 2000$ $= 2000 e^{\frac{t - \frac{1}{2}kt^{2}}{2}} \qquad A1$					A1 for	
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ (if A suddenly appears without justification: A0) Alternatives $(1) c = \ln 2000 \qquad M1$ $\ln \frac{x}{2000} = t - \frac{1}{2}kt^{2}$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^{2}} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^{2}} \qquad A1$ $(2) c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} \qquad A1$ $(2) c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} + \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^{2}} e^{\ln 2000}$						
$x = e^{t - \frac{1}{2}kt^2 + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^2}, \text{ where } A = e^c$ (if A suddenly appears without justification: A0) Alternatives $(1) c = \ln 2000 \qquad M1$ $\ln \frac{x}{2000} = t - \frac{1}{2}kt^2$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^2} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^2} \qquad A1$ $(2) c = \ln 2000 \qquad M1$ $x = e^{t - \frac{1}{2}kt^2} + \ln 2000 \qquad M1$						
$x = e^{t - \frac{1}{2}kt^2 + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = Ae^{t - \frac{1}{2}kt^2}, \text{ where } A = e^c$ (if A suddenly appears without justification: A0) Alternatives (1) $c = \ln 2000$ M1 $\ln \frac{x}{2000} = t - \frac{1}{2}kt^2$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^2} $ M1 $x = 2000 e^{t - \frac{1}{2}kt^2}$ A1 $(2) c = \ln 2000$ M1						
$x = e^{t - \frac{1}{2}kt^2 + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = 4e^{t - \frac{1}{2}kt^2}, \text{ where } A = e^c$ (if A suddenly appears without justification: A0) Alternatives (1) $c = \ln 2000$ M1 $\ln \frac{x}{2000} = t - \frac{1}{2}kt^2$ $\frac{x}{2000} = e^{t - \frac{1}{2}kt^2} \qquad M1$ $x = 2000 e^{t - \frac{1}{2}kt^2} \qquad M1$						
$x = e^{t-\frac{1}{2}kt^2 + c}$ $x = 2000, t = 0 \Rightarrow A = 2000$ $x = 4e^{t-\frac{1}{2}kt^2}, \text{ where } A = e^c$ $(if A \text{ suddenly appears without justification: A0})$ $M1$ $Alternatives$ $(1) c = \ln 2000 \qquad M1$ $\ln \frac{x}{2000} = t - \frac{1}{2}kt^2$ $\frac{x}{2000} = e^{t-\frac{1}{2}kt^2} \qquad M1$						
$x = e^{t - \frac{1}{2}kt^{2} + c}$ $x = 2000, t = 0 \implies A = 2000$ $x = 4e^{t - \frac{1}{2}kt^{2}}, \text{ where } A = e^{c}$ M1 Alternatives $(1) c = \ln 2000 \qquad M1$ $\ln \frac{x}{2000} = t - \frac{1}{2}kt^{2}$		Justification: A0)				
$x = e^{t - \frac{1}{2}kt^2 + c}$ $x = 2000, t = 0 \implies A = 2000$ M1 Alternatives (1) $c = \ln 2000$ M1		(if A suddenly appears without				
$x = e^{t - \frac{1}{2}kt^2 + c}$ M1 Alternatives				6		
$\ln x = t - \frac{1}{2}kt^2 + c$ A1A1 c required		$x = e^{-\frac{t}{2}kt^2 + c}$ $x = e^{-\frac{t}{2}kt^2 + c}$ $x = 2000, t = 0 \implies 4 = 2000$				
1, 2		$\ln x = t - \frac{1}{2}kt^2 + c$	AlAl			
7(a) $\int \frac{dx}{x} = \int (1 - kt) dt$ M1 Attempt to separate and integrate. M0 if mixture of x's and t's	/(a)					

				PM
8(a)	$\overrightarrow{AB} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$	M1		
	I_i has equation $\mathbf{r} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$.	A1	2	OE eg $\mathbf{r} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$
(b)	$3 - \lambda = 4 + \mu$ $-1 + \lambda = 1$ $2 = -1 - \mu$	M1		Set up at least 2 equations and attempt to solve.
	$\lambda = 2$ $\mu = -3$ Confirm in third equation	A1 A1		Alternative: showing (1, 1, 2) lies on
	Intersect at (1, 1, 2)	A1	4	both lines A2
(c)	$\begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \\ -6 \end{bmatrix}.$	M1		
	is satisfied by $\mu = 5$	A1	2	
(d)	$\overrightarrow{CD} \bullet \overrightarrow{AB} = 0$	В1		$\overrightarrow{CD} \cdot \begin{bmatrix} -1\\1\\0 \end{bmatrix} = 0 \text{ or } \overrightarrow{CD} \cdot \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = 0$
	$ \left(\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 9 \\ 1 \\ -6 \end{bmatrix} \right) \bullet \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = 0 $	M1		not $\overrightarrow{CD} \cdot l_1$, unless corrected later
	$(-6-\lambda)(-1)+(-2+\lambda)=0$	m1		
	$\lambda = -2 D \text{ is } (5, -3, 2)$	A1	4	Answer may be in vector form
				Alternative to part(d)
				$\begin{bmatrix} x-9 \\ y-1 \\ z+6 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = 0 $ B1
				$\Rightarrow x - y = 8 \qquad M1$
				$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \text{their } \mathbf{r} \text{ from (a)} \qquad M1$
				(5, -3, 2) A1
	Total		12	